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Abstract

In this paper we propose the DataCell, an event management
system designed as a flexible data hub in an ambient environment
and we mainly focus on its language interface. The DataCell pro-
vides an orthogonal extension to SQL’03, called “basket expres-
sions”, which behave as predicate windows over multiple streams
and which can be bulk processed for good resource utilization. The
functionality offered by basket expressions is illustrated with nu-
merous examples to model complex event processing applications.

The DataCell capitalizes the architectural choices and perfor-
mance characteristics of a modern column-store relational DBMS.
The design and implementation of the DataCell does not affect
the underlying database kernel and the SQL software stack. This
means that the DataCell extends the functionality of the DBMS
without hampering the already given features and performance.

1. Introduction

Data Stream Management Systems (DSMS) have become an
active research area in the database community. Inspiration comes
from potentially large application areas, e.g., network monitoring,
sensor networks, telecommunication, financial and web applica-
tions. Many DSMSs have been designed from scratch to counter
the perceived sluggishness of the traditional DBMSs. The latter
are considered inadequate to achieve the desired performance, be-
cause they are too heavy in terms of functionality, and they are not
equipped to support continuous querying. In a relational DBMS,
a submitted query is evaluated once over the existing data. On
the contrary, in a stream application we need mechanisms to sup-
port long-standing queries over tables that are continuously up-
dated from the environment.

Several DSMS solutions have been proposed, e.g., [4, 6, 7, 9,
10], and in most of them the architects follow a dedicated (bounded)
main-memory approach. In addition, the application semantics
are defined in a SQL-based stream query language. However,
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the drawback of this approach became clear as the applications
grew more complex and demanding. Commercial systems, such
as Streambase1 and Coral82 stress the need for a better integration
with a full fledged relational DBMS. Ad-hoc solutions to combine
streams with proprietary persistent main-memory tables is insuffi-
cient.

In this work, we design a data stream management system,
called the DataCell, adopting the other end of the spectrum. We
build the DataCell on top of an extensible relational database en-
gine, the MonetDB3 system, an open-source, column-oriented da-
tabase engine. We present our vision in the context of MonetDB,
but it should be emphasized that the approach taken can be applied
in other modern (SQL-based) systems as well. The database plat-
form is used to elicit the challenges and create a working prototype
quickly.

Currently we study the DataCell over the stream application
scenario of an ambient home setting. The DataCell is positioned
as a data refinery cell that acts as an easy programmable data hub
in a multi network environment. Its task is to collect, filter and
aggregate information from different sources to enable complex
decision making, e.g., to control the lighting based on audio/video
presentations. The challenge in an ambient environment is to hide
the computer from the casual user and at the same time be pro-
active in steering the environment.

In this paper, we focus on the DataCell language interface. The
main contributions and topics addressed are:

• Predicate windows. The DataCell generalizes the sliding
window approach predominant in DSMS to allow for arbi-
trary table expressions over streams. It enables applications
to selectively process the stream and prioritize event pro-
cessing based on application semantics.

• Bulk processing. The DataCell processing engine is geared
at bulk processing events. This favors a skewed arrival dis-
tribution, where a peak load can be handled easily, and pos-
sibly within the same time frame, as an individual event.

• SQL compliance. The language extensions proposed are or-
thogonal to existing SQL semantics. We do not resort to
redefinition of the WINDOW concept, nor do we a priory as-
sume a sequence data type. Moreover, the complete state of
the system can at any time be inspected using SQL queries.
It enables reflective algorithms.

1http://www.streambase.com/
2http://www.coral8.com/
3http://monetdb.cwi.nl



The stream behavior in the DataCell is obtained using a min-
imal and orthogonal extension to the SQL language. Streams are
presented as ordinary temporary tables, called baskets which are
the target for (external) sources to deposit events. Baskets carry lit-
tle overhead as it comes to transaction management. Their content
disappears when the system is shut down.

Subsequently, SQL table expressions can be marked as basket
expressions, which extract portions of interest from stream baskets
or ordinary tables. It creates a tuple flow between queries, inde-
pendent of the implementation technique of the underlying query
execution engine.

The benefit of the two language concepts is a natural integra-
tion of streaming semantics in a complete SQL framework. It does
not require overloading the definition of existing language con-
cepts, nor a focus on a subset of SQL’92. Moreover, its integration
with a complete SQL software stack from the outset leverage our
development investments.

The validity of our approach is illustrated using concepts and
challenges from the “pure” DSMS arena where light-weight stream
processing is a starting point for system design. An exhaustive list
of examples provides the foundation for comparison against the
DataCell approach.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce the SQL enrichment in more detail. This is
expanded in Section 3, where we give a brief overview of the Dat-
aCell Architecture. Section 4 explores the scope of the solution by
modeling stream-based application concepts borrowed from dedi-
cated stream database systems. Finally, Section 5 discusses related
work and Section 6 concludes the paper and outlines future work.

2. DataCell Model

In this section we describe the DataCell model. We introduce
the role of each component: baskets, receptors and emitters, bas-
ket expressions, and continuous queries. All components are mod-
elled with the SQL’03 language [8] with a novel extension, the
basket expression, which will also be described in this section.
Together they capture and generalize the essence of streaming ap-
plications.

2.1 Receptors and Emitters

The periphery of the DataCell consists of receptors and emit-
ters. A receptor is a separate process that picks up events from a
communication channel and forwards them to the kernel for pro-
cessing. The latter under an auto-commit transaction mode. Like-
wise, an emitter is a separate process that picks up the events that
constitute the answer of the continuous queries and delivers them
to clients interested, i.e., who have subscribed to the query result.

Receptors and emitters are woven into the SQL language frame-
work as a variant of the SQL COPY statement. The communication
protocol is encoded in the string literal which is interpreted inter-
nally. Currently, the supported protocolls are TCP-IP and UDP
channels, which are sufficient to create publish/subscribe systems
and support the large networks in our ambient setting. We expect
xml-based protocols with shredding to baskets to follow quickly.

Example 1. The statements below collect events from the desig-
nated IP address and deliver them to another. It is the smallest
DataCell program to illustrate streaming behavior.

copy into X(payload)
from ’localhost:50032’;

copy from X(tag,payload)
into ’localhost:50033’
delimiters ’,’,’\n’;

2.2 Baskets

A basket is the data structure to hold stream portions. It is rep-
resented as a temporary main-memory table and acts as buffer, i.e.,
incoming events are just appended. Tuples are removed from the
basket when “consumed” by a query. The commonalities between
baskets and relational tables are much more important to warrant
a redesign from scratch. Therefore, their syntax and semantics is
aligned with the table definition in SQL’03.

Example 2. The basket definition below models an ordered sequence
of events. The id takes its value from a sequence generator upon
insertion, a standard feature in most relational systems nowadays.
It denotes the event arrival order. The default expression for the
tag, ensures that the event is also timestamped upon arrival. The
payload value is received from an external source.

create basket X(
tag timestamp default now(),
id serial,
payload integer

);

Important differences between a basket and a relational table
are their processing state, their update semantics and their trans-
action behavior. The processing state of a basket SB is controlled
with the statements ENABLE SB and DISABLE SB. The default is
to enable the basket to enqueue and dequeue tuples. By disabling
it, queries that attempt to update its content become blocked. Se-
lective (dis)enabling basket can be used to debug a complex stream
application.

A distinctive feature of a basket is its handling of integrity vi-
olations. Events that violate the constraints are silently dropped.
They are not distinguishable from those that have never arrived in
the first place.

Furthermore, the events do not appear in the transaction log
and updates can not be “rolled-back”. Baskets are subject to a
rigid concurrency scheme. Access is strictly serialized between re-
ceiver/emitter and continuous queries. It all leads to a light-weight
database infrastructure.

With baskets as the central concept we purposely step away
from the de-facto semantics of processing events in arrival order
in most streaming systems. We consider arrival order a semantic
issue, which may be easy to implement on streams directly, but
also raises problems with out of sequence arrivals [1] and unnec-
essary complicates applications that don’t care about the arrival
order.

2.3 Basket Expressions

The basket expressions are the novel building blocks for Dat-
aCell queries. They encompass the traditional SELECT-FROM-
WHERE-GROUPBY SQL language framework. A basket expres-
sion is syntactically a table expression surrounded by square brack-
ets. However, the semantics are quite different. Basket expres-
sions have side-effects; they change the underlying tables during



query evaluation. All tuples referenced in the sub-expression that
contribute to the result are also immediately removed from their
underlying store. This leaves a partially emptied basket or table
behind. Note, a basket can also be inspected outside a basket ex-
pression. Then, it behaves as any relational table, i.e., tuples are
not removed as a side-effect of the evaluation.

Example 3. The basket expression in the query below takes prece-
dence and extracts all tuples from the X . All tuples selected are
immediately removed from X , but they remain accessible through
B during query execution. From this temporary table we select the
payloads satisfying the predicate.

select count(*)
from [select * from X

order by id ] as B
where B.payload >100;

The basket expressions initiate tuple transport in the context
of the query. The net effect is a stream within the query engine.
X is either a basket or a table. In both cases tuples are removed.
However, deletion from tables is much more expensive, because
it involves a transaction commit. This involves moving the tuples
deleted to a persistent transaction log. Baskets avoid this overhead,
no transaction log is maintained.

2.4 Continuous Queries

Continuous queries are long-running queries that have to be
continuously evaluated while new incoming stream data arrives.
Conceptually, the query is re-executed whenever the database state
changes. Two cases should be distinguished. For a non-streaming
database, the result presented to the user is an updated result set
and it is the task of the query processor to avoid running the com-
plete query from scratch over and over again.

For a streaming database, repetitive execution produces a stream
of results. The results only reflect the latest state and any persis-
tent state variable should be explicitly encoded, e.g., using stream
aggregates and singleton baskets.

In the DataCell we consider every query with a basket sub-
expression as a continuous query. A query without basket expres-
sions follows the standard SQL semantics. A top level query over
basket is not distinguishable from querying a table, only by plac-
ing basket brackets it becomes a continuous query.

Example 4. A snippet of a console session is shown below. The
continuous query can be stopped and restarted by controlling the
underlying basket state.

create basket MyFavored as
[select * from X where payload>100];

enable MyFavored;

select * from MyFavored;
[ 135, 2007-03-27:22:45, 123] MyFavored
[ 136, 2007-03-27:22:46, 651] MyFavored
[ 137, 2007-03-27:22:49, 133] MyFavored

2.5 Application Modeling

The envisioned graphical user interface closely match the net-
work view of the flow dependencies amongst the baskets, (contin-
uous) queries, tables, and the interface. Compared to similar tools,
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Figure 1. DataCell Application

e.g., Borealis [1], the coarse grain approach of SQL as a specifica-
tion vehicle pays off.

Example 5. Figure 1 illustrates how the DataCell application sce-
narios can be modeled succinctly. In this simple scenario, the re-
ceptor R appends the new incoming data to a basket B1. When
new data appears, a submitted continuous query Q obtain access
to the incoming stream and it is evaluated, its results are contained
in the basket B2 that emitter E, forwards them to the interested
subscribers.

--An Alarm Application
create basket C1(

tag timestamp default now(),
pl integer);

copy into C1 from ’alarms:60000’;

create basket C2( tag timestamp,
pl integer,
msg string);

copy from C2 into ’console’;

create table T1(
pmin integer,
pmax integer);

insert into C2
select tag, pl, "Warning"
from T1, [select * from C1 where pl > 0] as A,
where A.pl<T1.pmin or A.pl>T1.pmax;

3. DataCell Architecture

In this section we give an overview of the DataCell architec-
ture. A peek into the compilation process is given in Section 3.2
and the computational model for complex expression in Section
3.3. We conclude with a synopsis of the runtime system.

3.1 Overview

The DataCell architecture is building on top of a traditional
database engine in a way that it is fully exploiting and extend-
ing the already established features and properties of a relational
DBMS. In this way, we avoid to build a specialized engine from
scratch. Instead, we utilize the existing DBMS kernel to pro-
vide a highly efficient stream engine. In particular, we work on
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Figure 2. DataCell Architecture

top the MonetDB database system4, a column-store database en-
gine. MonetDB provides a virtual machine architecture based on
a small assembly language MAL, which mostly wraps the highly
optimized relational primitives. MAL is the target for query com-
pilers and optimizers. The MonetDB architecture provides a clean
software stack to create powerful front-ends, such as SQL’03 and
XQuery5.

The DataCell is positioned between the (enhanced) SQL to
MAL compiler and the MonetDB runtime engine. In particular,
the SQL runtime has been extended to deal with baskets using the
BATs in the kernel and a scheduler to control activation of the con-
tinuous queries.

The multi-process architecture of DataCell is illustrated in Fig-
ure 2. Each receptor is mapped into a separate thread to handle
events received and to insert them into the baskets. Likewise, each
emitter aligns with a thread that handles delivery of the tuples to
clients being registered.

3.2 Compilation

After the DataCell has been started, all registered continuous
queries are compiled into a series of MonetDB Assembly Lan-
guage (MAL) programs. In essence, a MAL program is a sequence
of binary relational algebra operators that fully materialize their
(intermediate) results. This algebra supports functional abstrac-
tions and a minimal set of flow-of-control primitives. It is pow-
erful enough to represent logical plans produced by the compiler,
but also precisely describe conditional and repetitive execution of
subqueries. The plans received from the SQL front-end are sub-
ject to a series of code transformations, which replace portions by
better evaluation sequences.

The continuous queries are translated into factories, Mon-
etDB’s notion of a co-routine. The factories are selectively acti-
vated by the DataCell scheduler to make another cycle through the
plan. For a more in depth description of this language we refer to

4http://monetdb.cwi.nl
5See http://monetdb.cwi.nl for details on MAL

p1:= basket.new("X_pl",:bat[:lng, :int]);
basket.group("X","X_pl");
receptor.new("X");
receptor.start("X");

p3:= basket.new("Z_pl",:bat[:lng, :int]);
basket.group("Z","Z_pl");
emitter.new("Z");
emitter.start("Z");

factory stepOne():bit;
x:bat[:lng,:int]:= basket.bind("X","X_pl");
z:bat[:lng,:int]:= basket.bind("Z","Z_pl");

barrier go:= true;
basket.lock("X");
basket.lock("Z");
be:= algebra.select(x,0,nil);
bat.insert(z,be);
bat.delete(x,be);
basket.unlock("Z");
basket.unlock("X");
yield qry00:=true;

redo go:= true;
exit go;
end stepOne;

Figure 3. MAL program for a query step

the MonetDB website6.

Example 6. Figure 3 illustrates a snippet a continuous query plan.
The core of the plan is a regular relational algebra expression. It
is surrounded by calls to the lock manager, to avoid concurrency
conflicts amongst the DataCell threads. The outer loop of the
plan yields a result each time the loop identified by barrier . . .
redo . . . exit is executed. The complete (sub)plan is packaged in
a co-routine called by the DataCell scheduler.

3.3 Computational Model

The computational model underlying continuous query pro-
cessing is based on Petri nets [12], or predicate nets in particular
[11]. All baskets are considered placeholders for tokens. The bas-
ket expressions are aligned with Petri-net transitions and a tran-
sition “is fired” if input tokens are available on all input place-
holders. In the DataCell context this maps to a test for non-empty
basket expressions, i.e., a query automatically is executed if the
basket expressions contain tuples. The result of the transition in a
Petri-net is the delivery of tokens in, possibly multiple tables.

Example 7. The Petri-net model for the query below is shown in
Figure 4.

select * from
[ select * from X] as A,
[ select * from

[select * from Y] as B
] as C

An advantage of the Petri-net model is that it provides a clean
definition of the computational state. That is, stream semantics
are not hidden behind language concepts, such as sliding windows

6http://monetdb.cwi.nl



 [select * from X] as A,
 [select * from
   [select * from Y] as B
 ] as C

[select * from
  [select * from Y] as B
] as C

[select * from X] as A [select * from Y] as B

select * from

Figure 4. Petri-net Example

or a tuple-at-a-time processing scheme. Every Petri-net transi-
tion runs in isolation and has full access to all placeholders. The
computational model produces a bottom up evaluation sequence
for queries with nested and sibling basket expressions. That is, it
enables queries whose actions depend on intermediates produced
within the same (compound) queries. Petri-net analysis tools, e.g.,
PIPE27 can be used to analyze problematic cases and performance
bottlenecks.

3.4 Runtime Behavior

Each continuous query proceeds in a few well-defined steps us-
ing a bottom-up traversal of the query plan. We call this collection
of steps query execution life-cycle.

1. A snapshot is taken from all baskets of interest.

2. Basket (sub-)expressions are evaluated producing temporary
tables.

3. The result is evaluated as an ordinary relational query.

4. Tuples consumed from the baskets are permanently removed.

5. Repeat the steps 1 to 5 for the next batch of tuples.

The snapshot view is a cheap operation. It inspects all baskets
mentioned in the query and replaces them with a view. In Mon-
etDB, taking a range-based view is handled in sub-micro seconds.
These views fixate the database state to consider during query ex-
ecution cycle. This action could be a system global atomic action.
In phase two, all basket expressions are evaluated. For each we
build a result table and create a list of tuples that will be removed
from the basket or table upon completion. If one of the stream
expressions produces an empty result, then the iteration cycle is
canceled and, conceptually, all tuples are moved back to their bas-
kets. In phase three, the query is evaluated against a database state
comprised of tables for inspection and the temporaries produced.
The result set is sent to the client that posed the query, a table or to
an outer query.
7http://pipe2.sourceforge.net/

This basic cycle opens a plethora of optimization challenges.
For example, if we deal with an ordered stream, cancellation of
the cycle does not require to redo all work. Instead, we can keep
the intermediate around until the next iteration starts and decides
cheaply if the state of affairs has changed by comparing the view
attributes.

4. Querying Streams

In this section we illustrate how key features of a stream query
language fit the DataCell model. The state-of-the-art query lan-
guage streamSQL8, is used as a frame of reference. Its design
is based on experiences gained in the Aurora [6] and CQL in
STREAM [2, 4] projects. It also reflects an experience based ap-
proach, where the language design evolved based on concrete ap-
plication experiments.

4.1 Filter and Map

The key operators for a streaming application are filter and
map. The filter operator inspects individual tuples in a basket
and is the most common operator. Tuples that satisfy the filter are
taken out of the basket, others remain until further notice. A map
operator takes an event and constructs a new one using built-in op-
erators and calls to linked-in functions. Both operations directly
map to the basket expression. There are no upfront limitations with
respect to functionality, e.g., predicates over individual events or
lack of access to global tables.

Example 8. A simple stream filter is shown below. It selects out-
lier values within batches of precisely 20 events and keeps them
around in a table.

create view Filter
as [select * from X

order by id size 20 ];
insert into outliers

select b.tag, b.payload
from Filter as b
where b.payload >100;

The SIZE clause is equivalent to the SQL LIMIT clause. In com-
bination with the ORDER BY clause it simulates a non-overlapping
tumbling window.

4.2 Stream Aggregates

The initial strong focus on aggregation networks has made stream
aggregations a core language concept. In combination with the im-
plicit serial nature of event streams, most systems have taken the
route to explore a sliding window approach to ease their expres-
siveness.

In the DataCell, we have opted not to tie the concepts that
strongly. Instead, an aggregate function is simply a two phase pro-
cessing structure: aggregate initialization followed by incremental
updates.
Example 9. Continuous queries are often used to accumulate a sta-
tistical property as more tuples from a basket have been consumed.
The prototypical example is to calculate a running average over a
single basket. Keeping track of the average payload calls for cre-
ation of two global variables and a continuous query to update
them. In this case, updates only take place after every 10 tuples.
8http://blogs.streamsql.org/



declare cnt integer;
declare tot integer;
set tot =0;
set cnt=0;
with Z as [select payload X ]
begin

set cnt = cnt +(select count(*) from Z);
set tot = tot +(select sum(*) from Z);

end;

4.3 Stream Splitting

Stream splitting enables tuple routing in the query engine. It is
heavily used to support a large number of continuous queries with
common interest by factoring out the common part of interest.

Unfortunately, in standard SQL all queries produce a single
tabular result, i.e., there is no syntactic construct to spread the re-
sult over multiple targets. To achieve the desired effect one has to
resort to the procedure abstraction offered by SQL-PSM.

Alternatively, the SQL’99 WITH construct comes closest to what
we need. It defines a temporary table constructed as a prelude
for a query. Extending its semantics to permit a compound SQL
statement block gives us the means to selectively split a basket,
including replication. It is an orthogonal extension to the language
semantics.

Example 10. Reconsider our basket X with the intend to partially
replicate it into two basket Y and Z. The WITH compound block
is executed for each basket binding A.

with A as [select * from X]
begin

insert into Y
select * from A
where A.payload>100;

insert into Z
select * from A
where A.payload<=200;

end;

The non-deterministic behavior due to parallelism and relative
speed of the continuous queries require special care. In the Dat-
aCell stream splitting induces parallel processing too. However,
the effect of relative speed is considered an application issue. Not
a language semantic issue. The ability to inspect the complete
system state and to precisely control emptying of the baskets is
sufficient to deal with the problem raised.

4.4 Stream Joins

The join, gather and merge operators of streamSQL share
the semantic problem found in all stream systems, i.e., at any time
only a portion of the infinite stream is available. This complicates
a straight forward mapping of the relational join. The problem is
circumvented by redefinition of the join to hold for a portion of
the baskets only and to exploit knowledge of the monotonicity of
event tags. Then an efficient algorithm is within reach.

The approach taken in the DataCell is to encode the join al-
gorithm over multiple baskets explicitly. It creates a more flexi-
ble setting, i.e., precisely define how long to wait for out of order
events, at the cost of potential loss in performance.

Example 11. Consider the join between two baskets X and Y with
a monotone increasing id sequence. Then a merge-join algorithm

is called for. A crucial design issue is to determine when portions
seen from either operand do not play a role in the remainder of the
join construction. The simple merge-join step below illustrates a
solution to this problem. It uses the WITH to collect bounds before
the query block is entered.

with MaxX as
select max(id) from X

with MaxY as
select max(id) from Y

select A.*,B.*
from [select * from X where id < MaxY] as A,

[select * from Y where id < MaxX] as B
where A.id = B.id;

The gather operator concatenates tuples based on matching
keys. It is equivalent to a basket expression involving a join over
two baskets. A continuous query can be defined to deal with un-
matched tuples piling up.

The merge operator takes the input of multiple baskets and
produces a merged sequence based on a user expression. The Dat-
aCell is based on baskets, i.e., bag of events. Merging its content
translates simply into posing an ORDER BY clause in the basket
expression.

4.5 Basket Nesting

A query may be composed of multiple and nested basket ex-
pressions. The Petri-net interpretation creates intermediate results
as soon as a basket becomes non-empty. A good example is the
one shown in Figure 4. Each incurs an immediate side-effect of
tuples movement from its source to a temporary table in the con-
text of the query execution plan. Yet, a compound query is only
executed when all basket sub-expressions have produced a result.
Consequently the query result depends on their evaluation order.
However, since at any point in time the database seen is complete
snapshot, it is up to the programmer to resolve evaluation order
dependencies using additional predicates.

A design complication arises when two continuous queries use
basket-expressions over the same basket and if they are interested
in the same events. Then we have a potential conflict. These events
will be assigned randomly to either query. If both need access to
the same event, it is mandatory to split the basket and replicate the
events to a private basket first.

4.6 Metronomes

Basket expressions can not directly be used to react to lack
of events in a baskets. This is a general problem encountered in
all stream systems. A solution is to inject marker events using a
separate process, called a metronome function. Its argument is a
time interval and it injects a value into a basket.

The metronome can readily be defined in an SQL engine that
supports Persistent Stored Modules and provides access to linked
in libraries. This way we are not limited to time-based activation,
but can program any decision function to inject the stream mark-
ers.

Example 12. The example below injects a marker tuple every hour.

create function metronome ( t interval)
returns timestamp

begin



call sleep(t);
return clock();

end;
insert into X(tag,id,payload)
select *
from [select null,metronome(1 hour),null] as Z;

The metronome can also be used in a basket expression to con-
trol their activation, but care should be take to achieve the desired
result. Consider the following query

select S.*
from [metronome(1 hour)] as tick,

[select * from X] as S;

This query will not ensure that we see all events received at an
hourly interval. For, each sibling basket expression is evaluated
in random order. Thus, if we start with the second basket and
it turns out empty, then the metronome function won’t be called.
The effect is that we receive the events 1 hour after the first one
is stored. The solution is to exploit the bottom-up evaluation of
basket expressions. That is, the basket should be looked at only
once per hour.

select count(*) from
[ select * from X

union
(select null,metronome(1 hour),null)

];

We guarantee that each hour the query returns an answer, but
not necessarily those that have been received in the latest hour.
For, the result depends on the order in which both sub-queries are
executed. If we start with the first one then we won’t notice in-
coming events until the next metronome tick. Instead, we need a
mechanism to enforce that the basket is empty after the metronome
has ticked. The bottom up evaluation of basket expressions comes
to rescue.

select count(*)
from [ select * from X

where [metronome(1 hour)]];

In this example the metronome basket expression produces an
answer before the outer expression is activated.

4.7 Heartbeats

A related problem addressed in stream applications is to ensure
a uniform event stream, e.g., missing elements are replaced by
a dummy if nothing happened in the last period. The basket is
expected to be ordered on time. At regular intervals the heartbeat
injects a null-valued tuple to mark the epoch. If necessary it emits
more tuples to ensure that all epochs are seen downstream before
the next event is handled.

The heartbeat functionality can be simulated using a join be-
tween two baskets. The first one models the heartbeat and the
second the events received. We assume that the heartbeat bas-
ket contains enough elements to fill any gap that might occur. Its
clock runs ahead of those attached to the events. In this case, we
can always pick all relevant events from the heartbeat basket and
produce a sorted list for further processing.

Example 13. The heartbeat functionality does not require special
support. It can be modeled using the metronomes and the basket
expressions as follows:

insert into HB select * from
[ select null, T, null

from [metronome(1 second)] as T;

[ select * from X
union
select * from HB
where X.tag< max(select tag from HB)]

4.8 Bounded Baskets

The arrival rate of stream events may surpass the capabilities of
queries to handle them in time before the next one arrives. In that
case, the baskets grows with a backlog of events. To tackle this
problem, streamSQL provides a mechanism to identify “slack”,
i.e., the number of tuples that may be waiting in the basket. The
remainder is silently dropped.

Although this problem is less urgent in the bulk processing
scheme of MonetDB, it might still be wise to control the maxi-
mum number of pending events in bursty environments. Of course,
the semantics needed strongly depend on the application at hand.
Some may benefit from a random sampling approach, others may
wish to drown old events. Therefore, a hardwired solution should
be avoided.

Example 14. The query below illustrates a scheme to drop old events.
Although this does not close the gap completely, the basket can be
evaluated in micro-seconds.

select count(B.*), ’ dropped’
from [select * from X

where id < max(select id from X)-100)] as B;

4.9 Stream Partitioning

Stream engines use a simple value-based partitioning scheme
to increase the parallelism and to group events. A partitioning
generates as many copies of the down-stream plans as there are
values in the partitioning column. This approach only makes sense
if the number of values is limited. It is also not necessary in a
system that can handle groups efficiently.

In the context of MonetDB, value-based partitioning is con-
sidered a tactical decision taking automatically by the optimizers.
A similar route is foreseen in handling partitions over streams to
increase parallelism. Partitioning to group events of interest still
relies on the standard SQL semantics.

Example 15. A continuous query that returns a sorted list by traffic
per minute become:

select Z.tag, Z.cnt
from [select minute(tag) as tag,

count(*) as cnt
from X
group by tag] as Z

order by Z.tag;

4.10 Transaction Management

Transaction semantics in the context of volatile events and per-
sistent tables is an open research area. For some applications non-
serializable results should be avoided and traditional transaction
primitives may be required. In streamSQL this feature is cast in a



lock and unlock primitive. It makes transaction control visible at
the application level with crude blocking operators.

The approach taken in the DataCell is to rely on the (optimistic)
concurrency control scheme and transaction logger as much as
possible. All continuous queries have equal precedence and their
actual execution order is explicitly left undefined. If necessary,
it should be encoded in a control basket or explicit dependencies
amongst queries.

4.11 Sliding Windows

Most DSMSs define query processing around streams seen as a
linear order list. This naturally leads to sequence operators, such as
NEXT, FOLLOWS, and WINDOW expressions. The latter extends
the semantics of the SQL WINDOW construct to designate a portion
of interest around each tuple in the stream. The WINDOW operator
is applied to the result of a query and, combined with the iterator
semantics of SQL, mimics a kind of basket expression.

However, re-using SQL window semantics introduce several
problems. To name a few, they are limited to expressions that ag-
gregate only, they carry specific first/last window behavior, they
are read-only queries, they rely on predicate evaluation strictly be-
fore or after the window is fixed, etc. In streamSQL the window
can be defined as a fixed sized stream fragment, a time-bounded
stream fragment, or a value-bound stream fragment only.

The basket expressions provide a much richer ground to des-
ignate windows of interest. They can be bound using a sequence
constraint, they can be explicitly defined by predicates over their
content, and they can be based on predicates referring to objects
elsewhere in the database.

Example 16. A sliding window of precisely 10 elements and a shift
of two is encapsulated in the query below. A time bounded win-
dow simply requires a predicate to inspect the clock.

select * from
[select * from X limit 2 ]
union select * from X limit 8;

--create window Xw (size 10 seconds
-- advance 2 seconds);
select * from
[ select * from X

where tag < min(select X.tag)+2 seconds]
union select * from X

where tag < min(select X.tag)+8 seconds;

The generality of the basket expressions come at a price. Op-
timization of sequence queries may be harder if the language or
scheme does not provide hooks on this property. However, we still
allow window functions to be used over the baskets. Their seman-
tics is identical to applying them to an SQL table.

5. Related work

Complex event management systems is an emerging field, which
capitalizes experiences from middle-ware, publish/subscribe sys-
tems, and stream databases. The latter area has been the main
driver for the query language concepts introduced in this paper.

Several DSDMs solutions have been proposed, e.g., [4, 6, 7, 9],
but few have reached a maturity to live outside the research labs.

Example systems that can be downloaded for experimentation are
Borealis 9 and TelegraphCQ 10.

The functionality of the DataCell was inspired by streamSQL
and CQL[5, 3]. The latter project has been abandoned and the soft-
ware is not maintained for ease of experimentation. StreamSQL is
also based on CQL, but it carries the signs of meeting the require-
ments of their client base. For example, it has been observed in
StreamBase that the relative speed by which events flow through
the network may lead to confusing information at the user inter-
face. It led to a strong (and ad hoc) ordering of streams based on
their names. The Petri-net model provides the necessary abstrac-
tion to highlight and analyze effects of concurrent behavior.

The message handling schemes offered by commercial sys-
tems, e.g. Oracle Streams and Microsoft Messaging, are primarily
focused on persistent brokerage of messages between applications.
Their message envelops carry the information needed for routing
and authorization. Instead, the DataCell assumes a light-weight
messaging system and focus on their refinery in a SQL-based ap-
plication.

6. Summary and future work

The DataCell project aims to provide a complete SQL-based
solution for stream data management in an ambient setting. This
world is characterized with large number of sensors and mobile de-
vices that require a stable hub to filter, aggregate, and store stream
information. Moreover, event streams range from dribbles to mas-
sive event floods in case of emerging disasters.

In this paper we have chartered the direction taken by extending
the MonetDB software platform. In particular, we have introduced
the stream basket, basket expression and the compound WITH
statement to reallies a tuple stream inside an existing SQL engine.
The language extensions are orthogonal to the SQL standard. They
involved minimal changes to the our SQL compiler.

Tuple movements are triggered by sub-queries that use them
for producing a derived value, and continuous queries act as con-
current processes refining the tuples received from the environ-
ment. The basket-expressions blend into the syntax and semantics
of SQL’03 and provide an elegant solution to define stream-based
applications. The underlying computation model are Petri nets,
which provides a sound formal basis to analyze liveliness, safety
and performance of a DataCell application.

The language concepts introduced are compared against build-
ing blocks found in “pure” stream management systems. They can
all be expressed in a concise way and demonstrate the power of
starting the design from a full-fledged SQL implementation.

A prototype DataCell kernel is operational and it is used to
assess its functionality and performance. Experiments based on
patching the intermediate code produced by the SQL compiler in-
dicate that bulk processing is effective and that basket expressions
nicely adapt to event arrival rates. Dealing with more than 100K
events/second using the SQL framework seems feasible.

We make steady progress with the implementation of the com-
piler and will soon shift our focus on the plethora of optimization
issues luring for attention. As soon as the functionality is fully
covered, the DataCell becomes part of the MonetDB open-source
package.

9http://www.cs.brown.edu/research/borealis/public/
10http://telegraph.cs.berkeley.edu/telegraphcq/v0.2/
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